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A SUCCESSIVE SWEEP METHOD FOR SOLVING OPTIMAL PROGRAMMING PROBLEMS
Stephen R. McReynolds and Arthur E. Bryson, Jr.

Division of Engineering and Applied Physics
Harvard University

ABSTRACT

An automatic, finite-step numerical procedure
is described for finding exact solutions to non-
linear optimal programming problems. The procedure
representa a unification and extension of the
steepest-descent, and aecond variation techniques.

The procedure requires the backward integration
of the uaual adjoint~vector differential equations
plus certain matrix differential equations. These
integrations correspond, in the ordinary calculus,
to finding the first and second derivatives of the
performance index respectively. The matrix
equations arise from an inhomogeneous Ricatti trans-
formation, which generates a linear “feedback
control law'" that preserves the gradient histories,
Hu(t) , on the next step or permits changing them

by controlled amounts, while also changing terminal
conditions by controlled amounts. Thus, in a finite
number of steps, the gradient histories can be made
identically zero, as required for optimality, and
the terminal conditions satisfied exactly. One for-
ward plus one backward sweep, correspond to one step
in the Newton-Raphson technique for finding maxima
and minima in the ordinary calculus.

As by-products, the procedure produces (a) the
functions needed to show that the program is, or is
not, a local maximum (the generalized Jacobi test)
and (b) the feedback gain programs for neighboring
optimal paths to the same, or a slightly different,
set of terminal conditionms.

CLASS OF PROBLEMS TREATED

The method is applicable to a class of non-~
linear optimal programmirg problems where one wishes
to determine control functions wu(t) in

t, <t =< t, so as to minimize (or maximize) a per-
formance index of the form
!
J o= ¢lx(e)),e ]+ f L{x(t),u(t),t]dt (1)
t

0
subject to the constraints

x = f[x(t),u(t),t] x(t) is an n-component (2)
state vector
u(t) is an m-comporent
control vector

x(to) = x (3)

0

w[x(tl),tl] =0 : ¥ is a q~component (4)

vector (q < n)

A further restriction on the class of problems
3 H
treated in this paper is that we assume — 1is a
du
positive-definite (or negative-definite) matrix over

* This latter technique is reviewed briefly in the

Appendix to this paper.

the whole interval tp 2t 2t

variational Hamiltonian introduced in the next
section.

where H 1is the

The final time, t, , may be given either

explicitly or implicitly in Eqns. (4). For
simplicity of presentation, we will first discuas
the case where the final time 3 is given
explicitly.

CASE WHERE FINAL TIME IS GIVEN EXPLICITLY

In the usual manner we introduce the auxiliary
scalar functions

HOL%,u,t) = Lixou,t) + ATE(x,u,t) (5)

O(uyx,t) = d(x,t) + viulx,t) (6)

where A(t) 1is an n-component vector of influence
functions and v is a q-component constant vector.
We regard u(t) as control functions and v as
control parameters, and introduce a modified per-
formance index J where

t
1

J o= ov,x(t)),e ] + f {H{A(t) ,x(t) ,u(t),t]

t
0

- AT(t)i}dt (7)

Note that when (2) and (4) are satisfied, (7) is
identical with (1).

Necessary conditions for an extremal path are
(e.g. see Ref. 1)

:T
AT e on )
0= Hu (9
Aee) = e vxe e ] = (o w0 (10)
i

Suppose we arbitrarily choose some control
functions u(t) and some control parameters v ,
integrate Eqns. (2) forward with initial conditions
(3), and Eqns. (8) backward with boundary conditions
(10). 1In general, Eqns. (4) and (9) will not be
satisfied. Now, consider a perturbation around
this path:

éx = £ 6x + f 6u (11)
X u

A = §x - £16X - H_ 6u 12)
X Xu

-H
XX
SH =H 6x +H 0bu+ £6% specified (13)
u ux uu u
éx(to) specified (14)
SA() = [0 6x + ydv] as
1 XX X t=t
sy = [wxdx]t=tl specified (16)
We may regard (11)-(16) as a linear,
McReynolds

and Bryson
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inhomogeneous two-point boundary value problem that
determines thc functions &x(t) , 8A(t) , Su(t) ,
and the parameters dv in terms of specified
functions 6Hu(t) and specified parameters 6x(t0)

and 6y . This is very close to the viewpoint taken
by Merriam (Ref. 2) and Kelley, Kopp, and Moyer
(Ref. 3).

To solve this two-point boundary value problem
we may solve (13) for du(t) in terms of &x(t) ,
§x(t) , and 4H (t) , provided H (t) is non-
u uu
singular:

Su = —H-1{-6H + H 6x + £16A] an
uu u ux u

and, upon substituting (17) into (11) and (12), we
obtain

6x = Aéx + B oA+ v (18)
8% = C 6x - ATSN + w (19)
where

A=f - fH I (20)
X u uu X

B = -f H-lg' (21)
u uu u

C=-H _ +H H-lY (22)
XX XU uu ux

] -1

v = £ HOIGH (23)

w = -H_ H lsy (24)
Xu uu u

THE INHOMOGENEOUS RICATTI TRANSFORMATION

In view of Eqns. (15) and (16), let us introduce
the following inhomogeneous Ricatti transformation
(suggested in Refs., 4, 5):

SA(t) = P(t)dx(t) + R(t)dv + h(t) (25)

89 = RN (£)6x(t) + Q(t)dv + g(t) (26)

where dv and 6y are constant infinitesimal
vectors, P(t) , R(t) , and Q(t) are matrix
functions, and h(t) and g(t) are vector functionms.
Now, differentiate (17) and (18) with respect to

time:

.

S =P sx+P éx+Rdv+h @n

0=R6x +R6x + Qdv + g (28)
Using (25) in (18) gives

6x = (A+BP)§x + BR dv + Bh + v (29)

Equating (192 and (27) and using (25) and (29) to
eliminate 6x and &\ , we have:

(C-A"P-PA-PBP-B)6x - [(AT+PB)R+R]dv

- [(AT+PB)htBv-wHR] = 0 (30)
In a similar fashion, substitute (29) into (28):

(R+RT(A+BF) 16x + (RTBR+Q)dv + R:(Bh+v) + g = 0 (31)

Viewing (30) and (31) as identities, valid for
arbitrary values of 6x and dv , it follows that
the coefficients of 6x and dv must vanish; this
yields differential equations for P , R, Q, h ,
and g . Also, if we require that (30) and (31) be
equivalent ¢o (15) and (16) at the terminal time, we

obtain boundary conditions for P , R , Q , h , and
g

. T . - : T

P = -A P-PA-PRP4C : P(t)) = [¢ =o  +v wxx]t_tl 32)

R = -(A+PB)R L R(t ) = [¥)) (33)
' 1 x't=t, ’

Q= -RTBR P Qty) =0 (34)

B = -(AT+PB)h-Pwtu: (e =0 (35)

% = RT(Bntv) talt) =0 (36)

Note that (32) is a nonlinear matrix differential
equation (a matrix Ricatti equation), while (33) is
a linear matrix differential equation using the
solution of (32): (34) is a matrix quadrature using
the solution of (33); (35) is a linear vector
differential equation using the solution of (32},
and (36) is a vector quadrature using the solution
of (35).

By integrating (32)-(36) backward along with
(8) from t, to t;, (a "backward sweep') we

generate all possible solutions to (11)-(13) that
satisfy the terminal conditions (15)-(16)., We may
think of {25)-(26) as "boundary conditions” at time
t<t that are equivalent to the boundary

1
conditions (15)-(16) at time t =t , Thus the

1
boundary conditions at the terminal time are
"swept' backward to thz initial time: a “forward
sweep' then generates the required particular
solution that also satisfies the initial conditions
(14), This is precisely the approach taken by
Bryson and Frazier (Ref. 6) to solve the linear
smoothing problem except that the sweeps occur in
the opposite order: the "forward sweep' is the
Kalman-Bucy filter which involves a matrix Ricatti
equation, and the "backward sweep' gives the
smoothing solution that satisfies the terminal
conditions.

After completing the backward sweep, the
required values of dv in terms of the desired
infinitesimal changes 6Hu(t) N 6x(to) , and &y

can be obtained using (26):
dv = [Q7}(6v-g-R"6x) ] 3N
t=t0

Having these values of dv , we could, in principle,
substitute them into (29) and integrate these
equations forward with (25) and (17) to find 6x(t),
§A(t) , and dSu(t) (a "forward sweep').

Alternatively, using (25) we could regard (17)
as a linear feedback law for determining &u(t) :

= -p-1 T
Su(t) Huu(t)([Hux(t)+fu(t)P(t)]6x(t)

+ fE(t)R(t)dv - 6Hu(t) + fE(t)g(t)) (38)

Note that dv
initial time

in (38) may be evaluated at the
t =t, as was done in (37) or we may

evaluate it at several intermediate times in the
manner of a sampled-data feedback law or we may
evaluate it continuously in the manner of a
continuous feedback law., If we do evaluate dv
continuously, then (38) becomes

McReynolds
and Bryson
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X o il T, oo=1,T T, -
du(t) HO L {(H  +E (P-RQTIRT) 18x + [£ RQ Ligw

- T - -l
+ [-8H +f (h-RQ™!g) ]} (38a)

Now, the first term in square brackets on the right
hand side of (38a) is a Iinear feedback on deviations
8x(t) from the nominal state variable histories and
will keep GHu(t) =0, 8 =0, for 6x(to) 0.

The sccond term in square brackets is the forcing
function necessary to produce the desired changes
8¢ while holding GHu(t) = Q0 . The third term in

square brackets is the forcing function necessary to
produce the desired changes GHu(t) while holding

¢ = 0 ; it is a Iinear functional of GHu(t) , and
vanishes 1if GHu(t) = (0 . We could, therefore,

integrate (2) forward (a "forward sweep'), using
(38) in

u(t) = uold(t) + Sdu(t) (39>

sx(e) = x(e) - x ), (¢) (40)
The advantage of this procedure over previous
gradient procedures is that we have separate, precise

control over the desired changes GHu(t) and 8y .

By repeating this forward-backward sweep several
times we can bring Hu(t) and w[x(tl),tll pre-

cisely to zero while increasing the performance
index; the required number of steps depends on the
successful range of linearization of (11)-(16). We
suggest that if N steps are to be used, it would be
reasonable to choose

{7 (t) = -V (0 D)
so{®) - -c(r)w(r-l)[x(tl),tl] (42)
where c(r) = r/N and r is the step number; in

this way, larger and larger reductions in the
"residuals" are taken each step and, on the last
step, the whole remaining correction is made,
bringing Hu(t) and ¢ precisely to zero.

LOCAL OPTIMALITY - GENERALIZED JACOBI TEST
AND CONJUGATE PQINTS

When we have succeeded in bringing Hu(t) =0
and w[x(tl),tll = 0 , we have generated an

admissible extremal path. For this case, the feed-
back Iaw (38a) simplifies to:

- u-1 T _pa-1pT
Su(t) Ho (0)[H +f (P-RQ™°R ) 18x(t) (43)

aince &8¢y = 0 and GHu(t) = 0 implies that

v=w=h=g=0 (see Eqns. (23), (24), (35),
(36)). If the symmetric mxm matrix Huu(t) is

positive (or negative) definite and the symmetric

nxn matrix P—RQ"‘RT is finite over the semi-open

interval t, <t <t,, then (43) indicates
Su(t) =0 if Gx(to) = 0 and we are assured that

we have generated a path that is at least a local
optimal path. This is a generalized Jacobi test:

1f P-RQ-!RT becomea infinite at some point this

ia called a conjugate point to the terminal manifold
w[x(tl),tl] = 0 , An extremal path is not an

optimal path if it contains a conjugate point (see
e.g. Ref. 4).

INTERPRETATION OF THE MATRICES P, Q, AND R

Let us define a return function. V(v,u,x,t)

which is the value of J in (7) when starting from
state x at time ¢t -~ €, uaing the control

functions wu(t) in (2) and the control parameters
v . Infinitesimal variations away from a given set
of initial conditions, &x(t) , and infinitesimal
changes in the control parameters, dv , while
holding GHu(t) = 0 , will produce an infinitesimal

change in the return function, &V , given by

&V = [‘T(t)vWTi"(tl)'tll] sx(t)

dv
+ %IGxT(t),dvT] P(E),R(E) | |8x(E) (44)

T
R (£),Q(t)j| dv
From (44) it is clear that

T v T av

AT(t) = ax () ° v v

2! 2 2 (43)

3V v ‘v
P(t) = Ix(r)ax(t) ° = dvax(t) ° 32
From (26), or (45)-(46), we can also write

T -2 -

R(e) = 5xty » A0 = 3T (46)
and we note these quantities are similar to the
steepest-ascent quantities A(W)(t) and IWW(t)

of Bryson and Denham (Ref. 7).
If the path is extremal (Hu(t) =) , and
satisfies the terminal conditions (w[x(tl),tll =0),

then V = V(x,t) is the optimal return function of
Hamilton-Jacobi-Bellman theory (see e.g. Ref. 8).

Equation (44), using (26) with Sy =0 , g =0,
to eliminate dv becomes
sv = aTex + T ox" (p-rQ" 1R 6x 55

which gives the infinitesimal change in the optimal
return function for infinitesimal changes in the
initial conditions &x(t) holding the final
conditions constant (8¢ = 0) .

SUMMARY FOR CASE WHERE FINAL TIME
IS GIVEN EXPLICITLY

(A) Estimate the control functions u(t) and
integrate x = f(x,u,t) forward with given values
of x(to) . Record the constants y[x(t,),t;] ,
and the functions wu(t) . x(t) .

integrate
(B) Estimate the control parameters v and /

. T T
A= -f A backward with A(t,) = [¢x+v wx]t-tl'

using u(t) , x(t) to evaluate fx[x(t),u(t),t] .

Calculate H = ATf and its derivatives Hu N Huu

McReynolds
and Bryson
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H , H as you go, H”! must also be calculated.
ux XX uu

While doing so, one can verify that Huu is
positive (or negative) definite. If Huu does not

satisfy the appropriate condition, better estimates
of u(t) and v are required in (A).

(C) Simultaneously with (B), integrate Eqns.
(32)-(36) for P ,Q , R, h, and g backward,
using the derivatives of H from (B) and GHu(t)

from (41). Record the forcing functions
-1 - T -
Huu(t)[ GHu(t)+fu(t)h(t)] u(e)
and the feedback gains

-1 T -
BB (6)+£ (£)P(2)] = K(t)

-1 T i
Huu(t)fu(t)k(t) L(t)

(D) Determine and record the parameters dv
frem (37), i.e.

dv = @7l (xg) [6v-g () R (1) 6x(ty)]
(E) Repeat {A) using the improved estimates of
u(t)
u(t) = uold(:) + U(t) - K(:)[x(:)-xold(t)] - L(t)dv
(F) Repeat (BY, (C), and (D) using the
improved estimates vi v ,

= +
v Vold dv

(G) Repeat (E) aud (F) until Hu(t) =0,
blx(t)),e ] =0 .

CASE WHERE FINAL TIME IS GIVEN IMPLICITLY

If the final time, £y is given impiicitly in

(4), then it 1is necessary to estimate t for the

1
first forward sweep, in addition to u(t) and v .
A few additional equations must be integrated on the
backward sweep in order to determine the required
,dtl for the next forward sweep.

The development ia the same as in the previous
case through Eqn. (10); at that point an additional
necessary condition is required to determine the
final time, namely the transversality condition

2x(c),t ] = Nt+°xfﬂ'lt-tl =0 (48)

The development is again the same up to Eqns. (15)
and (16) which are replaced by the following:

T
GA(tl) 0 (€, () ym(e ) ) 1 6x(t ) 0 (49)
dv =]y (t)) , 0 ,n(t) dv {+| 0 (50)
ar | |mT(ey (e ) ,ace )J dt [H H-lsy | (51)
17 170 1] Luuw
where
T T
" (tl) = mx_HuHuu(Hux+fu°xx)]t-tl (52)
T

nf(e)) = (B uslelyT) (53)

uuuux t-tl

and

-l
ot = Gy (54)

DO _ 30 .30 : . 30
bt ~at Tawx Xt U

. _u=1¢T, T
Uns Huu(fuoxt+th+fu°xxf+Huxf)

Equations (17)~(24) are still applicable but, in
view of (49)~(51), the inhomogeneous Ricatti trsns-
formation beginning at (25) must be generalized to
the following:

fax(ed] [peey ,R(e) ,m(e)}|6x ] [h(r) (55)
av  [=[&T(e),Q(t) ,a(o)|]av [+]g(o) (56)
an | [m'¢e),nT(e) a(t) a | [8ce) 57)

Differentiating (55)-(57) with respect to time,
using the fact that d¢ , dQ2 , dv , and d:l are

constsnts, we obtain

&3] [F .k ,alf6x ] [p B (58)
o [={kT,q .af]av |+[r%|ex + |3 (59)
0| [a%,a%,& ae | [n® 8 (60)
Using (5;) in (18) give; 4 ‘
6x = (A+BP)éx + BRdv + BMde, + Bh + v (61)

Using (55) 1in (19), tgge:her with (61), we can
eliminate dX and 6x from (58)-(60), and obtain

three equations like (30) and (31) in éx , dv

)

and dti . These three equations sre satisfied

identically if we choose P , Q , R ,h,and g to
aatisfy (32)-(36) and m , n , a to satisfy

n+ (AT+PBYm = 0 (62)
2= -R7Bm (63)
& = -n"Bm (64)
B = ~m’ (Bhtv) (65)

where the boundary conditions for m , n , a are
given by (52)-(54). Note (62) is the same linear
vector differential equation as (33) whereas (63)
anc (64) are simply quadratures.

If (62)~(65) are included in the backward

integration sweep, then it is possible to solve for
both dv and dt;, at t = ty , using (56) and

(57) where desired values of dy and df? for the
next step are introduced. The desired value of
GHu(:) must be used in solving for h , g, and 8

from (35), (36), and (64.
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APPEND1X

THE NEWTON-RAPHSON METHOD AND ITS APPLICATIONS
TO ORDINARY CALCULUS PROBLEMS

1n this Appendix the Newton-Raphson method is
briefly stated. 1t will be seen that the Newton-
Raphson method applied to optimization problems
becomes a second-order iterative scheme which can be
applied in tuec neighborhood of a non-singular
optimum in order to obtain rapid convergence.

The formulation of second order steepest-ascent
methods may be based upon a simple extension of the
Newton-Raphson method used to solve s set of
simultaneous nonlinear equations. Suppose one
wishes to find an n-vector x = (xl,..,xn) such
that

P(x) = O Po= (P,..P)) (A1)
The Newton-Raphson method generates a sequence

x(9),x(1),...) by means of an iterative relation
a2y .

ktl k 3P, )
R A = i I I (a2)
X=X
The rationale for this is obtained by expanding
P(x) in a power series around xk .
p(xK+ax) = Px5) + & dx + 0(dx?) (A3)
X X=Xy
Setting P(xk+dx) = ( , one sees that
ax = GBlei) + ocax?) (A4)

b ignoring second and higher order terms on the
right hand side of (A4) omne obtains an estimate of
the error in x within first order accuracy. Thus
(A2) approximates the solution within a second order
P
error. The method naturally assumes I to be
nonsingular in the region containing (xk) and the
solution.

The Newton-Raphson method may be extended to
finding a local maximum of a function of several
variables f(x) . If f 1is continuously
differentiable, a local maximum x is
characterized by being a solution to the
following equations

£ w0 1=1,...,n (A5)
*y

Applying the Newton-Raphson method to these
equations, one arrives at a second-order steepest-
ascent method by merely identifying fx with

i

Pi in (A2).

The method may be readily extended tc problems
with constraints. Suppose the maximum of f 1is
wanted subject to the added constraint

g(x) = 0 (A6)

1n place of this problem one may substitute the
problem of extremizing f+ig with respect to x
and A as independent variables. This problem
has no constraints and may be handled as the first
case. An extremal is characterized by (A6) and

fx + ng =0 (A7)
Expanding (A6) sround a nominal solution (xk,xk)

one obtains the following set of linear,
inhomogeneous equations to solve:

0= (fx+xgx)|xk Kk + (£, Hhe, Jdx + g dh
’ (A8)
0 = glxk + - dx
Solving (A8) yields corrections dx and dx , and
the second order steepest-ascent method becomes

1
xk+ - xk + dx

1
xk+ = Xk + dx

(a9)

Several cautions must be exercised. One is
that dx must be small in order to guarantee con-
vergence, which implies that the original error
should not be too big. Secondly, the nominal and
the maximum must be non-singular and normal. This
is necessary to guarantee the inversion of the basic
equations. The non-singularity condition guarantees
that one can solve for dx . The normality con-
dition guarantees that one can solve for di .
Thirdly, one should note that the second-order
steepest-ascent method seeks out stationary
solutions, regardless of whether they are local
minima, local maxima, or saddle points. 1n order
to be sure that the sequence converges to the de-
sired extremum, the eigenvalues of the second
derivative matrix must be checked. This can be seen
for the problem without constraints by substituting
(A2) with P = f_ into a power series for f
around x° . o

k+?

Ky = £y - L emlel + o(E) (A10)
2 x

X XX X

k+1 k
1n order to guarantee that f(x Y > £(x ) , it is
necessary to assume fxx <0 .

McReynolds
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